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We study a recently introduced model of ballistic aggregation by using the scaling theory of
Smoluchovski’s equations and numerical simulations. The predictions of this mean-field theory for the
exponent characterizing typical cluster size are in ageement with the earlier results for all dimensions.
Nevertheless, the predicted monomer decay and particle size distribution are totally at variance with the
numerical observations in one dimension. The reason for this discrepancy is found to be the fact that
high velocity particles coalesce rapidly independent of their mass, which introduces correlations not tak-
en into account by the mean-field treatment. This discrepancy is likely to persist in all dimensions, so
that the model has no upper critical dimension. We also generalized our study to the case where the ini-
tial velocity distribution function of the particles has a power-law tail. It is found that, at least in one di-
mension, the typical cluster size behaves in a way that depends on the specific velocity distribution func-
tion, whereas the monomer decays regardless of the initial velocity distribution. We study also the case
in which the mean velocity is infinite. In this case it is found that the predictions of the Smoluchovski
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equation theory are completely inconsistent with the numerical results in one dimension.

PACS number(s): 68.70.+w, 05.40.+j, 03.20.+1, 05.20.Dd

I. INTRODUCTION

Irreversible aggregation phenomena have been studied
extensively by using scaling theories [1] and rate equa-
tions [2]. Numerical studies of explicit models [3-5] and
exact solutions [6] have been developed to investigate the
kinetic behavior of irreversible aggregation models. Re-
cently, the ballistic agglomeration model was proposed to
stimulate the aggregation phenomena with ballistic trans-
port [7]. In this model, particles of a given radius move
with random (bounded) initial velocities in a D-
dimensional space. Upon two particles colliding, they
join to form one larger particle of mass equal to the sum
of the two particle masses with a correspondingly larger
radius. The resulting velocity of the new larger particle is
determined by requiring the conservation of momentum.
This problem provides a simple test case for scaling argu-
ments which are being used in fluid mechanics to analyze
statistics of the merger of coherent structures such as
vortices [4] and thermal plumes. It is also an elementary
analog of astrophysical models of the accumulation of
cosmic dusts into planetesimals and thence into planets
[9]. This model is an idealization for those applications
because the particles only interact by collision. Never-
theless, it still captures some of the physics involved in
these more complicated problems.

In Ref. [7] a simple scaling analysis has been given for
this model, which shows that in D dimensions the aver-
age mass of a particle increases like t22/?*+2) We stud-
ied this model from a mean-field viewpoint by using the
Smoluchovski equation. Some of the results have been
reported briefly [8]. Our purpose is to understand the
small- and large-mass behaviors of c(m,t) and the con-
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centrations of particles of mass m by studying the corre-
sponding exponents. In order to verify our theory, we
performed numerical simulations of the model in one di-
mension. It is found that the predictions of this mean-
field theory for the exponent characterizing typical clus-
ter size are in agreement with earlier results for all di-
mensions. Nevertheless, the predicted monomer decay
and particle size distribution are totally at variance with
the numerical observations in one dimension. The reason
for this discrepancy is found to be the fact that high ve-
locity particles coalesce rapidly independent of their
masses, which introduces correlations not taken into ac-
count by the mean-field treatment. We also discussed an
interesting generalization in which the initial velocity dis-
tribution function has power-law decay for large values of
velocity. It is argued that this model may be relevant if
the aggregating particles are carried by turbulent fluid.

The paper is organized as follows: In Sec. IT we will in-
vestigate the asymptotic behavior of the ballistic aggrega-
tion from the scaling theory of Smoluchovski equation
and give the theoretical results for the case of the initial
velocity distribution with a power-law decay. Numerical
results will be described and discussed in Sec. III. In Sec.
IV we summarize our conclusions.

II. THE GENERAL THEORY

From the point of view of mean-field theory, the
ballistic aggregation model can be described by
Smoluchovski’s equations [10] for the concentrations
¢ (m,u ;t) of particles with mass m and velocity u:
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where the dot indicates a time differential and m=w'm "u “. (7)

K(m',m;u’',u) are phenomenological constants describ-
ing the rate at which a particle of mass m’ and velocity
u' reacts with another particle with mass m and velocity
u. Here we take the reaction kernel to be a homogeneous
function of its arguments, i.e.,

K(am,am';bu,bu’)=a}""'b}""K(m,m';u,u’) . (2)

Once K(m,m';u,u’) is known, an extensive scaling
theory [2] exists that allows one to find the long-time,

small- and large-mass behaviors of c(m,u;t). One
has, in particular, for marginal distribution
cm()= [ du c(m,u;t)
Cp(t)~m 2®(m /s(1)) ,
s()~t? (t—ow),
(3)

®P(x)~x"? (x—0),
Cpin~m~ " [1<<m <<s(1)],

where s(¢) is the typical cluster size, ®(x) a scaling func-
tion, and w, 7, and z exponents related by the scaling law
2—7)z=w.

Since our main interest focuses on the nongelling re-
gimes of our model, we have a conservation law for the
total mass, i.e.,

M(t)=f0°° f_m mdmducim,u;t)=1. (4)

In order to satisfy this condition, we propose the follow-
ing scaling ansatz:

clmu;t)y=m *a “‘¢(m/m,u/a), (5)

where 7 is the typical mass and & the rms value of the
velocity. Before we proceed in calculating the scaling ex-
ponents, let us first check on the possible relations be-
tween the velocity of the aggregate and its mass, resulting
from aggregation. Suppose the aggregate consists of
sufficiently numerous “monomers” whose velocities are
initially randomly distributed. Then according to the
momentum conservation and the central limit theorem,
one finds 7 (t)~#(t)"!/2. Generally, we assume that

u/u=pm/m . (6)
Substituting (2), (5), and (6) into (1) one obtains
1
mgy )
2 2 2
m=1u=—o m+m,=m mu,tmyuy,=mu

u=—o

33 3

u=—ow m=1

It then follows that

m~t?,

gthr (8)
with z being given by

z=1/(1—X,—PBA,) . 9)

From Eq. (9) it is noted that the dynamic exponent z is
characterized by the homogeneity exponents A,, and A,
of reaction kernels as well as the mass-velocity relation of
the aggregating clusters described by the coefficient B.
The homogeneity exponents are determined by the
specific physical or chemical process. For instance, if we
assume that the collision probability of two aggregates is
proportional to the product of the mutual cross section of
the two particles with their relative velocity, then the re-
action kernel for this process is given by

K(m,myu,uy)=Kolm,my)|u;—u,|, (10)
with
Ko=(m}"P+mj/P) P~ 1n

From Eq. (9) one immediately finds that
z=2D /(D +2). (12)

This result has been obtained in Ref. [7] by using a simple
scaling reasoning, but here it comes as a specific assump-
tion of a reaction kernel.

Now we turn to the scaling function ¢(&,7) since it
contains the information of the small- and large-mass
behaviors of the concentration. For simplicity, we re-
strict ourselves to the one-dimensional case. In order to
get an equation for scaling function ¢, we consider the
mass flow from m <m to m 2 m, which is defined as

. (my) My po
—_— 0=— ¢ N ;
M fo f_wc(m u;t)m dm du

=— [ €ds [ dn2s+Bp+sptnsin)],

(13)

where x =my/m, §£=m /M, and n=u /4. In view of the
following identity

mK(m,my;u,uy)c(m,uy;t)c(my,uy;t)

1 my—m
mK(m,m';u—"u)c(m,u;t)c(m’,u’;t) ,

m'=1
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one obtains an integral equation for the scaling function ¢

~w ["¢de [* dnl2+B)p+E8,+Bns,)
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= [¢as fj;’gdg' 7 7 dndwkgim—nig&meE, ). a4

This is the desired integral equation for the scaling function ¢(x,y), in which the parameter B is determined by the ini-
tial distribution of velocity and K (§,£’;—7’) by the reaction mechanisms. In the case of = — 1, this equation can be

further simplified into

W’x2f_+c:’ ¢(x’17)d7’= f:gdg fx‘*'_‘: dg' fj:o fj'woo d'f]dTI’K(gyg,;"]_n,)¢(§77,)¢(§’777,) . (15)

In principle Eq. (15) can be solved to give the features of
the scaling function ¢(&,n) for various kinds of kernels.
But very often one has to use some approximation
schemes. Since our interest centers on the large-mass
behavior, we use the following Fourier transform

#em=—p= [°_dk B(Eexplik) . (16)

In the one-dimensional case we consider a kernel of the
form

K(&Em—7')=K(&E)|n—7'lexp(—|p—n'| /N)
(N—>ow). (17

The Fourier transform of the kernel is given by

2 2a72
RE& K=Ky &6 2m X U=END (N ).
(685K =Ko(&:6W2/m= Tmnrs— (N—w)

(18)
After Fourier transform, Eq. (15) turns into
w'x 2@y(x)
= [eds [ 7 de [ dk R&E5KIBEB(E) .
(19)

Expanding $x(x) near k =0, we get
A 0 kn
O(x)=3 —‘—¢(()")(x) , (20)
n=0 N:

where

(n) =_1___ ® _ng
o (x) Ve f_m n"d(x,n)dn .

In the case of normal distribution of velocity, i.e.,
B=—1, one has u(m)~1/V'm. It then follows that

$67(E)~07(E)/E -

Thus one obtains a closed equation for scaling function
do(x) =4 (x)

wx’go(x)= ["£dE [ 7 dER(EEIH(EBEE)
1)

with K being defined by
K(£E)~K(&EENETV2HE712) (22)

For a physical kernel K, given by Eq. (11), it is easy to
see that Eq. (22) corresponds to the type III kernels in the
Smoluchovski theory of the aggregation [2], which gives
the result

do(x)~exp(—|x|7#), u=(2—D)/2D . (23)
In one dimension this yields

(x)~exp(—|x|71?) (x—0),
¢ P 24)
c () ~exp(—t"3 (t—>o0).

Here the Smoluchovski equation theory predicts that the
monomer decays exponentially, as determined by Eq.
(24). However, our numerical simulations on the one-
dimensional ballistic aggregation reveal that c,(¢) decays
approximately as ¢ ~!, which is inconsistent with the pre-
diction of the mean-field theory.

In all of the above, we assumed that the initial velocity
distribution function (VDF) had finite variance so that
the central limit theorem could be invoked to yield
v(m)~m ~12. An interesting generalization is the case
where the initial VDF has a broad distribution of ex-
ponent u

pw)~v W - (y o). (25)

In this case the particle number conservation states that
the sums of independent variables v; [13]

N
Vv=23 v

i=1

are given by the following.
For 0 <pu < 1, the typical value of Vy is

Vy~NVE (u<1),
~NInN (p=1); (26)

for 1 <p <2, the typical value of the difference ¥V, —Vy
reads

(Vy—Vy)?~N¥F (u<2),
~NInN (u=2); 27

for ;> 2, one recovers a purely linear dependence on N.
As we have already known from Eq. (9), the dynamic
exponent z depends on B, which is determined by the
velocity-mass relation. Combining the results of the par-
ticle number conservation and the momentum conserva-
tion, one finds that the typical velocity of a cluster is re-
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lated to its mass by
Vems(m)~m P~ (0<p<2), (28)

with a logarithmic correction for p=1. Therefore one
has
1
b=

for the initial velocity distribution Eq. (25). In the one-
dimensional case, one finds that the case 0 <p <1 corre-
sponds to the type II kernels and u > 1 to type III kernels
[2]. The behavior of the typical mass i (¢) can be es-
timated as the following [14]: The rate of increase of the
typical mass can be assumed to be the rate at which two
aggregates of typical mass react with one another. This
is so because the definition of typical size is such that it is
not influenced by the presence of a background of small
clusters. Thus it follows that the increase of 7 (¢) is

am(t) = =\ X
at K(m,m)~m"”",

where the effective kernel K is given by

K(x,p)=(x /P4y /P)D—1(x 1/p=14 , 1/u=1) 29)
so that

m(t)~t*, z=1/(1—R). (30
From Egq. (29) it follows that

y—1_1
k—“ D’
and D
=KD
z WD-D¥p (31)

Note that the above argument holds only if A <1. In the
general theory of the Smoluchovski equation, for A> 1
one expects the occurrence of gelatin transition. In the
nongelling cases with A <1 (u > ), one has the scaling an-
satz

Cm (D) ~Fi (1) 2$(m /) , 32)

where the scaling function ¢(x) is qualitatively different
for types of kernels. In one dimension, the scaling theory
of Smoluchovski’s equation gives the approximate results
for the scaling function

#(x)~exp(—|x|~1/A=1) (x »0,u>1), 33)
#x)~x"" (x—>0,L<u<1), (34)
T=2—P /W',

" . (35)

P, fo dx x%p(x) .
Only in special nongelling models are there exact results.
For K(x,y)=1(u=1), one finds ¢(x)~exp(—2wx),
and for K(x,y)=x+y (@u=1/2), one finds ¢(x)
~x 73 %exp(—x /2).

So far we have developed a Smoluchovski-type mean-
field theory for the ballistic aggregation. In order to
compare the numerical simulation results, we introduce a
real physical reaction mechanism for the reaction kernel

in one dimension, i.e., K(m,m';u,u’)~|u—u’'| and ap-
proximated our principal theoretical result Eq. (15) by
Eq. (21), which has been studied in Ref. [2].

In the next section, we discuss our numerical results
which show that the scaling theory predicts the dynamic
exponent z correctly up to the so-called Cauchy distribu-
tion of VDF, i.e.,

1
(v)= )
P 1+v?2
which corresponds to u=1. Beyond the Cauchy distribu-
tion, that is, in the case of 0 <u <1, the whole theory
seems to breakdown.

III. NUMERICAL RESULTS AND DISCUSSIONS

We have performed numerical simulations on the one-
dimensional case of the ballistic aggregation model. Ini-
tially there were 10° particles with mass m =1 randomly
or uniformly distributed in a finite interval. The initial
velocities were either uniformly distributed between —1
and 1 (the normal case) or distributed according to some
broad distributions (the anomalous cases). Free-
boundary conditions were used, except in the case of very
low reaction rates, where it was necessary to use periodic
boundary conditions.

The results of these simulations, shown in Fig. 1, indi-
cate that c,(z) decays approximately as ¢ ~'. In fact, it
can be shown that ¢ ~! is a lower bound on ¢,(2), as the
following conjunction of three events is sufficient for a
monomer to survive until time ¢ without reacting.

(1) It has an initial velocity of the order ¢33 or less.

(2) For all m of order t2/3 or less, the sum of the initial
momenta of the m particles to its right is positive.

(3) A similar condition on the sum of the momenta of
the particles to the left being negative.

All three events are mutually independent and each
has probability ¢~ !/3, since events (2) and (3) are
equivalent to the event that a one-dimensional random

2 T T . - . .
.
1k + 4
N
N
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~ S NG
5 : §
2 F AN ~0 .
= 1 N SOt 4
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< N ~ +
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FIG. 1. Double logarithmic plot of particle number ¢

(crosses) and monomer concentration ¢, (diamonds) against
time. log stands for the natural logarithm In.
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walk remains positive for a number of steps approximate-
ly t>/3. Thus

¢ (t)=constXt™! . (36)

These conditions are also, in essence, necessary, so that
¢,(t)~t ! as indicated by our simulations.

From the above and the scaling relation of Eq. (3), it
follows that 7=1. We check that this is indeed correct
(Fig. 2). It is noted that this is at variance with the
mean-field prediction, that the particle size distribution
should be bell shaped, that is, peaked around the typical
size and decaying sharply for both large and small parti-
cle sizes (so-called type III behavior [2]).

Such a complete failure of the mean-field theory is
rather surprising: indeed it is natural to think of D =1 as
the upper critical dimension for processes involving
ballistic transport, as is the case for D =2 in the case of
diffusive aggregation [3,12]. To find the explanation, we
look at the mass dependence of v(m). In the above treat-
ment, we had assumed that v (m) goes as m ~ /2. While
this is true for the typical velocity of a cluster of typical
mass, we see that at fixed time the velocity is essentially
independent of mass. In one dimension this can be ex-
plained by noting that any particle with an exceptionally
high velocity would quickly disappear by reacting with
one of its neighbors. Such is not the case, however, if the
reaction rate k << 1. In this case, one expects that for in-
termediate times a regime of mean-field behavior would
be found. We have performed simulations to verify this
hypothesis. In these simulations, whenever two particles
collide, they react with probability k to form a larger par-
ticle and pass through one another without any change in
velocity with probability 1 —k. (This latter case may not
appear very realistic, but it is a way to eliminate correla-
tions and thus check whether our mean-field treatment is
indeed the appropriate one.) The results are shown in
Fig. 3 for the case of the reaction rate k=0.05. The
monomer concentration is found to decay approximately
as exp(—Ct!”?) over a time range extending from 10 to

7 n I i 1 | 1
[ 1 2 3 4 5 6 7
log(m)

FIG. 2. Double logarithmic plot of ¢,,(¢) versus m at ¢t =1000
(diamonds) and ¢ =5000 (crosses). The slope of the best fit line
is approximately — %, as predicted by the theory. log stands for
the natural logarithm In.
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| 0,
| o

log(c)
&

FIG. 3. Plot of logc,(t) against ¢'/* for the reaction rate k
equal to 0.05. An approximate straight line regime correspond-
ing to times less than 100 is seen. The later decay (not shown in
this figure) can be found as ¢ ~!. log stands for the natural loga-
rithm In.

100, which then crosses over to the expected ¢ ~! decay in
large time. A plot of v(m) against m also reveals the ex-
pected behavior of m ~!/2. It should be pointed out that
the usual ¢ ! behavior is always recovered in the long-
time limit. This allows one to reject the suggestion that
the discrepancy with mean-field theory is due to the
pathological feature that particles cannot avoid each oth-
er in one dimension.

We have also performed simulations for the anomalous
distribution of the initial velocity, which is described by a
particle number conservation distribution of exponent p
as defined by Eq. (25). The mean-field theory, combined
with the particle number conservation theory, yields
z=p/(2u—1) in one dimension. These results have been
confirmed by the numerical simulations both for p=1
and p=3 (see Figs. 4 and 5). As for the decay of mono-

Iag(C‘) , loglc)

ab AN .

ol

n ‘ . l . A |
[o] 1 2 3 4 5 6
log(t)
FIG. 4. Double logarithmic plot of particle number (crosses)
and monomer (diamonds) concentration against time for an ini-
tial VDF with a power-law tail P(v)~v ~"*# with pu=32. log

stands for the natural logarithm In.
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mers, we found numerically that the value of the ex-
ponent w was roughly equal to one independent of y, in
contradiction with the mean-field predictions which
claim that the case u=1 corresponds to the constant ker-
nel (A=0) while the case u=13 to the type III kernels. To
understand this remarkable “‘superuniversality,” consider
two typical neighboring clusters at time ¢. Their constit-
uent particles at ¢t =0 fill two adjacent intervals. If now
an additional “test” particle starts between these two in-
tervals and if its initial velocity is sufficiently low to en-
sure that it would not be likely to collide with either of its
two neighbors before time ¢, this particle will survive as a
monomer at time ¢. If we denote by N (¢) the total num-
ber of clusters and by o(z) the typical velocity at time ¢,
one finds that the probability of a particle being between
two such intervals is roughly N (¢) and the probability to
start with a low enough velocity is about U(¢). Thus one
finds

¢ (t)=const X N()v(t)~t 1. 37

Again, it appears very likely that this lower bound is in
fact exact.

Now let us discuss the case of the super-Cauchy distri-
bution, i.e., the case of u < 1. In this case, the dynamic
exponent z can be obtained from Eq. (31)

g=—K , (38)
2u—1

in one dimension. For u=3%, we have z=2, which means
that the typical cluster size increases with time as
mi(t)~t?, or the particle number decreases as c(t)~t>.
However, the numerical simulations show that both par-
ticle number and monomer concentration decay exponen-
tially [see Fig. 6]. In order to understand this discrepan-
cy, we have also checked the behavior of the typical ve-
locity of a cluster. It is found, from Eqs. (28) and (38),
that the typical velocity of the cluster will increase with
time as v, ~, but the numerical results shows that the
typical velocity decreases approximately according to
some power law [see Fig. 7]. Furthermore, let us look at

2
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o ~
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= 1+ ° ~. .
ry + N
° ~.
g ~.
+ N
~.
2 A o ‘\‘\
t T o U\ 1
+ 0 N\
+ .0 ~.
+ 0 ~
+
+
3+ 4
©
+
-4 1 1 1 1 1 1 1 1 1
0.5 1 1.5 2 3 3.5 4 4.5 5 5.5
log(t)

FIG. 5. Double logarithmic plot of particle number (crosses)
and monomer (diamonds) concentration versus time, for u=1,
i.e., for the so-called Cauchy distribution. log stands for the
natural logarithm In.
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T T
® ¢ 9992222

log(cy) , log(c)

-6 1 1 I 1 1
(o] 1 2 4 5 6

3
fog(t)

FIG. 6. Double logarithmic plot of particle number (crosses)
and monomer (diamonds) concentration against time for the
“super-Cauchy” distribution of initial velocity with p=2. log
stands for the natural logarithm In.

the exponent 7. From a general theory of the Smolu-
chovski equation [2], 7=2 if the particle number decays
exponentially. We used the second moment of cluster
size distribution M,(?) to calculate the exponent 7 [14]
M,(1)=3 k(1) . (39)
k=0

The numerical result is shown in Fig. 8, indicating that
7=1, which is inconsistent with the prediction made
from the Smoluchovski-type mean-field theory. This
discrepancy might arise from applying the particle num-
ber conservation theory [13] to explain the numerical
simulation of the finite system. We will study this
phenomenon in more detail in a forthcoming publication.

Let us now consider higher dimensions. It is clearly
important to know whether the mean-field theory will
eventually be correct in some upper critical dimension.

-2.5 ©

10g(v/ad

-4.5 -

5.5 1 L 1 L 1 1 1 L

5
log(t)

FIG. 7. Double logarithmic plot of typical velocity versus
time for p= % log stands for the natural logarithm In.
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log(Mz)

5
log(t)

FIG. 8. Double logarithmic plot of the second moment of
cluster size distribution (M,(t)) versus time for u=%. log
stands for the natural logarithm In.

We surmise that this will not happen. The ansatz (10),
(11) for the kernel K (i, j) gives, in the terminology of Ref.
(2], p= —7 and hence

®(x)~exp(—|x|712) (x—0),

(40)

td/(d +2)

¢ (t)~exp(— (t—>),

which also implies that the particle size distribution is
bell shaped. These results have a rather simple physical
interpretation: if R (2) is the typical cluster radius, then
the total reactive area of the system is roughly
N(t)R(t)° ™!, which decays as t2/4*2) If one then as-
sumes

¢éy=—constX A(t)c, , (41)

one obtains exactly the above formulas.

These results, however, all rely upon the assumption
that a VDF of the form v(m)~m ~!/? is eventually es-
tablished. In view of the one-dimensional results, this is
highly questionable. Indeed, in higher dimensions, the
conservation of the total volume fraction ¢ causes the
mean free path of a cluster to be of the order of the typi-
cal cluster radius. This may well eventually eliminate
high-velocity particles regardless of mass and lead to
v(m) being mass independent, as in one dimension. In
fact, we may repeat the preceding argument: let the con-
stituent particles of distinct clusters at time ¢ be labeled at
t =0 by the cluster they belong to at time z. Assume that
particles with the same label are initially located in one
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regular (more or less spherical) domain of volume ap-
proximately s (¢), where s (¢) is typical cluster size. Then
the probability that an additional “‘test particle” falls in
the interstitial region between these domains is of the or-
der of s (£)~ /2. If this particle has, in addition, a velocity
of order of U(¢) or less, it will survive as a monomer up to
time z. This latter condition has a probability of (¢) as
all components of the velocity must be small so that

C(t)z5(t)ds(t)1/dzt—(d2+2)/<d+z> , 42)

contradicting (40), which claims stretched exponential
behavior for c,(¢#). However, it should be remembered
that, for many systems of practical interest, one has
¢ <<1, so that the mean free path is infinite in practice.
The mean-field theory would then be valid in much the
same way as it is valid for low reaction rates in one di-
mension. Simulations in higher dimensions are clearly
desirable, but they are, unfortunately, quite difficult to
perform.

IV. CONCLUSIONS

We have studied the ballistic aggregation model by us-
ing the scaling theory of the Smoluchovski equation as
well as numerical simulations. We find that this model
has the exponents z=2 and w =1 in one dimension. The
latter is incorrectly predicted by the mean-field theory to
be a stretched exponential. The reason for this
discrepancy lies in the fact that the VDF at large times is
independent of mass. The case of initial VDF’s obeying a
particle number conservation was also studied. Scaling
arguments analogous to those used in the previous case
were found to agree with numerical work, in the case of
finite mean velocity. We found that the value of z
changed continuously with the particle number conserva-
tion exponent p if u =1, whereas the value of one for the
exponent w is unaffected by these variations, thus exhibit-
ing a “universal” behavior. In the case of super-Cauchy
distribution of initial velocity, i.e., u <1, we found that
the mean-field theory of Smoluchovski equation with the
particle number conservation theory cannot give the
correct predictions of the kinetic behavior of ballistic ag-
gregation, at least, in one dimension. These discrepancies
are speculated to persist in higher dimensions, so that
there is, strictly speaking, no upper critical dimension for
this system. These effects may well be unobservable un-
less the volume fraction is sufficiently large, however, so
that the mean-field theory will presumably be excellent
for a large variety of systems with small volume fractions.
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